Perspectives de modulation du microbiote de l'anophèle pour limiter la transmission de Plasmodium

Vectopole Sud, Montpellier, 15 octobre 2020

Isabelle MORLAIS, IRD MIVEGEC

Microbiota acquisition

The breeding site is a crucial factor shaping the community composition in adults and the season affects microbiota diversity

Akorli et al. 2016

Gimonneau et al. 2014

Microbiota composition

Changes with physiological state or aging

Mosquito epithelia share a core microbiota

Pseudomonas, Comamonas, Acinetobacter, Rhizobium, Burkholderia and members of the Enterobacteriaceae

Large individual variability

Taxonomic classification of bacterial reads retrieved from the mosquito tissues at the different developmental stages.

Pseudomonas	Comamonas
Serratia	Brevibacterium
Intrasporangiaceae_Y	Ensifer
Arthrobacter	Ramlibacter
Ralstonia	■ Citrobacter

Acinetobacter	
Comamonadaceae	
Bergeyella	
Bacillus	
Gluconacetobacter	

Rhizobium	Burkholderia
Enterobacteriaceae	Sphingomonas
Asaia	Escherichia-Shigell
Streptococcus	Staphylococcus
Enterobacter	Chryseobacterium

	Elizabethkingia
	Delftia
ella	Sphingobium
	Propionibacterium

Micrococcus

- Cedecea Brevundimonas Devosia Nocardioides Bacteroides
- Methylobacterium Microbacterium Corynebacterium
- Parabacteroides
- Aeromonas

Microbiota composition

The bacterial flora was mainly composed of Gram-negative communities

The microbial communities in the epithelia are structured according to the physiological status of the mosquito.

Some bacteria taxa were more associated with one or another tissue at a particular time point

The bloodmeal reshapes bacterial communities

Upon blood feeding:

- reduction in diversity/richness
- bacterial proliferation, mainly Enterobacteriaceae (*Klebsiella, Serratia, Enterobacter,* ...)

Impact of bacterial communities for the mosquito

From antibiotic treated mosquitoes to clear the microbiota

<u>On development</u>: axenic larvae fail to develop beyond the first instar, but bacterial recolonization rescues larval growth (Coon et al. 2014)

On lifespan and fecundity : supplementation of antibiotics in the blood meal increases fecundity and survival (Gendrin et al. 2015)

On mosquito resistance to insecticides : Antibiotic supplementation via sugar decreased tolerance to the insecticides (deltamethrin and malathion)

<u>On infection</u>: Antibiotic treatment increases mosquito susceptibility to *Plasmodium* infection (Beier et al. 1994, Dong et al. 2009, Gendrin et al. 2015)

→ |

Microbiota protects the mosquito from *Plasmodium* infection but the natural microbiota proliferation may decrease mosquito population size and time available for parasite transmission

Bacteria that interfere with *Plasmodium* sporogonic development

Asaia, Enterobacter, Pantoea, Serratia and Pseudomonas have been proposed as promising symbiotic agents for blocking malaria transmission

Discrepancies of results between laboratories or models

Contrasting effect according to experimental setups (experimental oral infection versus natural microbiota)

Oral challenge to bacterial cultures

Bando et al. 2013

Negative impact: *Serratia marcescens* reduces the *Plasmodium* parasite load Correlation on field collected mosquitoes

Tchioffo et al. 2014

Serratia have a **protective role** on natural *P. falciparum* infections

How mosquito microbiota protects against Plasmodium infection

- The natural microbiota stimulates basal immune activity that controls its proliferation, maintaining homeostasis
- Blood feeding induces high levels of oxidative stress, released heme reduces ROS generation and contributes to bacterial proliferation
- A dityrosine network (Duox/Peroxidase) decreases midgut permeability to bacterial elicitors, protecting the microbiota but also favoring *Plasmodium* development

Homeostasis

Resident commensal microbes
Non-resident microbes

Fighting malaria with paratransgenesis

« An ideal paratransgenic candidate is one that can be genetically modified, colonizes vector mosquitoes in the same body compartments where pathogens develop, spreads through mosquito populations, and is not a human pathogen"

Basic requirements for paratransgenesis

- Stable symbiotic relationship between microorganism and vector
- ii Symbiotic microorganism can be cultured *in vitro* and genetically manipulated
- Effector gene product should not impair symbiont and vector fitness
- iv Effector gene product should be secreted to assure interaction with the target pathogen
- An efficient means of introducing the engineered symbiont into field must be devised

Elizabethkingia anophelis, a bacterium in the microbiome of lab-reared Anopheles mosquitoes

E. anopheles, Flavobacteria, is the predominant bacterial species in insectaryreared *Anopheles*, also found in field mosquitoes Cultivable and amenable to genetic manipulation

Could be a good candidate for paratransgenesis BUT

Outbreaks of *E. anophelis* infections in humans have been described in Singapore, in the Midwestern United States, Congo, (meningitis and respiratory infections in new born babies and people with weakened immune systems) ...

A multiresistant bacteria, an emerging nosocomial pathogen

Wolbachia and Anopheles

- Field populations of anophelines were thought to be resistant to Wolbachia infections
- In 2014 : first evidence of Wolbachia sequences in Anopheles gambiae in Burkina Faso (Baldini et al. 2014)
- A new strain, wAnga, highly divergent from Wolbachia strains isolated in other insects

Baldini et al. Nature Com 2014

Gomes et al. PNAS 2017

Wolbachia prevalence in Anopheles

Wolbachia infection prevalence varies greatly among *Anopheles* species, country, season....

Wolbachia infection is commonly lower than 15% and *Wolbachia* is present at low density (<1% of mosquito genome copies)

- Shaw *et al.* Nature Com 2016 : In BF, Vallée du Kou, wAnga at a frequency of 33% (16/49) in *A. arabiensis*, 46% (275/602) in *An. coluzzii*

- Baldini *et al.* Nature Com 2014: Prevalence of Wolbachia from *An. gambiae*: in VK7, 7,1% (3/42), Soumousso 4,2% (1/24), VK5 86% (6/7)

- Gomes et al. PNAS 2017 : In Mali, prevalence of Wolbachia infection in A. gambiae (53.6%)

- Niang et al. Mal J 2018 : In Senegal: frequency of Wolbachia infection in A. funestus is of 1.2% (3/121)
- Ayala *et al.* Mal J 2019 : In Gabon, 10.8% (70/648) *Wolbachia*-positive specimens that belonged to 16 different *Anopheles* species and *An. moucheti* and *An. nili* have higher infection rates (>50%)
- Baldini *et al. Parasites* & *Vectors* 2018 : In Tanzania: wAnga infection prevalence in *An. arabiensis* was 3.1% (n = 65, 2014) and 7.5% (n = 147, 2016) ; no infection was detected in *An. funestus* (n = 41)

- Sawasdichai et al. 2019 : in Myanmar, Wolbachia DNA was detected in 3.5% (13/370) samples

Phylogeny of Wolbachia from Anopheles

Anopheles-infecting Wolbachia bacteria show high genetic diversity

Anopheles species are infected by different Wolbachia strains

Wolbachia acquisition seems to be independent of the mosquito phylogeny

Wolbachia and Plasmodium infections

Wolbachia infection negatively impacts *Plasmodium* sporozoite infection in *A. coluzzii* but the effect is opposite at the oocyst stage, with an enhanced oocyst infection

Wolbachia and Anopheles

In Anopheles (BF, VK5):

- *Wolbachia* infection significantly reduces the prevalence and intensity of sporozoite infection

- BUT no cytoplamic incompatibility, just accelerates egg laying

Shaw et al.2016

The native mosquito microbiota can impede *Wolbachia* transmission in *Anopheles*

Hughes et al.PNAS 2014

Is Anopheles gambiae s.l. a natural host of Wolbachia?

Chrostek mBio, 2019

 From data generated in the Ag1000G project, (Illumina sequences of 765 wild-caught mosquitos from 8 African countries, 79G reads total): less than 500 reads map to *Wolbachia*

□ No single *Wolbachia* strain associated with *Anopheles gambiae*

- Conflicting phylogenetic affiliations of the sequenced strains (span at least two Wolbachia supergroups)
- □ The presence of *Wolbachia* sequences in *An. gambiae* tissues can be a contamination

The mosquito microbiota can impede Wolbachia transmission?

Asaia spp. and Anopheles

Asaia inhibits *Wolbachia* transmission in *Anopheles* (Hughes et al., PNAS 2014), No *Wolbachia/Asaia* co-infections have been reported so far

Asaia (Acetobacteraceae) : a genus of acetic acid bacteria, also isolated from tropical plants Dominant bacteria colonizing mosquito midgut, ovaries/testis and salivary glands *Asaia* is transmitted vertically from mother to progeny and horizontally through feeding on nectars An easily cultivable and transformable bacterium (Favia et al. 2007)

Asaia,

a suitable agent for the paratransgenic control ?

Asaia sp. SF2.1 isolated from An. stephensi

- Cultivable and transformable (Favia et al. 2007)
- Express antiplasmodial effector molecules constitutively (Bongio et al. 2015)
- Constructs with blood meal induced (BMI) promoters inhibit *Plasmodium* infection and transgenic bacteria compete effectively with wild type *Asaia* (Shane et al. 2018)

Next:

- Effector genes to be inserted into the *Asaia* chromosome of field strains where they can be inherited stably
- Express more than one antiplasmodial effector gene simultaneously to suppress the evolution of resistance by *Plasmodium* to the antiplasmodial products

Microbiota and insecticide resistance

Mosquito microbiota is colonized by insecticide-degrading bacterial species : Pantoea, Pseudomonas, Sphingomonas, Burkholderia, Bacillus, Klebsiella and Serratia

Insecticide exposure leads to shifts in microbial composition (Dada et al. 2019)

Insecticide resistant strains have lower bacterial diversity, but enrichment of insecticide degrading bacteria such as *Klebsiella* an OP-degrading species (Dada et al. 2018, Barnard et al. 2019)

Microbial communities have a role in insecticide resistance phenotype Bacteria could be manipulated to produce toxins with novel insecticidal activity

Eco-holobiont approach, the microbiome of an entire ecosystem

Barredo et al. Trends Parasitol 2020

An. gambiae s.s. has a preference for specific plants : Mangifera indica, Thevetia neriifolia, Senna siamea, Parthenium hysterophorus, Ricinus cummunis (Manda et al. 2007, Gouagna *et al*. 2010)

The source of plant sugar meal affects

- Survival and fecundity
- Biting frequency

Pollen and nectar microbiomes may be important microbial contamination sources for mosquitoes (Asaia)

Plants can serve as a reservoir for horizontal transmission of bacteria (Caspi-Fluger et al.2012, Kenney et al. 2017) Plant bacteria could be used to express effector molecules interfering with the mosquito physiology

Self-medication as a defense against pathogen infection

The source of plant sugar meal affects mosquito fitness and also *Plasmodium* infection level (Hien *et al.* 2016)

Plant secondary metabolites may impact on the gut microbiota dynamics and contribute to pathogen development/inhibition

Can mosquitoes use medication to increase resistance or tolerance to infection ? (de Roode et al. 2019)

		Behavior displayed by	
		uninfected individual	infected individual
	self	prophylactic self- medication	therapeutic self- medication
t of medication	infected kin	trans-generational therapy (offspring) social therapy (other relatives)	trans-generational therapy (offspring) social therapy (other relatives)
Target	uninfected kin	trans-generational prophylaxis (offspring) social prophylaxis (other relatives)	trans-generational prophylaxis (offspring) social prophylaxis (other relatives)
			Current Opinion in Insect Science

The best microbiota : to cure or kill the mosquito ?

Thanks for attention !