

Vecteurs et ravageurs, contrôle et biodiversité

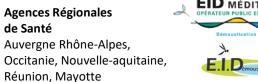
Colloque scientifique

9 et 10 novembre 2022 Agropolis - Montpellier

ARBOCARTO Outil de cartographie prédictive des densités de population des moustiques Aedes

M. Demarchi, R. Marti, M. Castets, A. Tran

jeudi 10 novembre 2022



Introduction

Aedes albopictus et Aedes aegypti

Des gîtes larvaires variés

(Bonizzoni, 2013)

- Artificiels et naturels
- Petite taille
- Mise en eau par la pluie ou par l'humain (arrosage, stockage d'eau)

Besoins : outils de surveillance, opérationnels dans des contextes géographiques variés !

Objectifs

- Cartographier les abondances d' Ae. albopictus ou Ae. aegypti aux différents stades de développement
 - adaptées aux actions de surveillance et de contrôle
 - via un outil simple et paramétrable

 Simuler et évaluer les différentes stratégies de contrôle vectoriel

(RO)

Mode « Utilisation opérationnelle » (hebdomadaire par exemple)

orienter les actions de mobilisation sociale ajuster les actions des équipes terrain sur les quartiers à risque

Mode « Analyse »
suivi spatial et temporel de la présence du
moustique

Mode « Communication, Prévention » simulation des actions de prévention et lutte antivectorielle

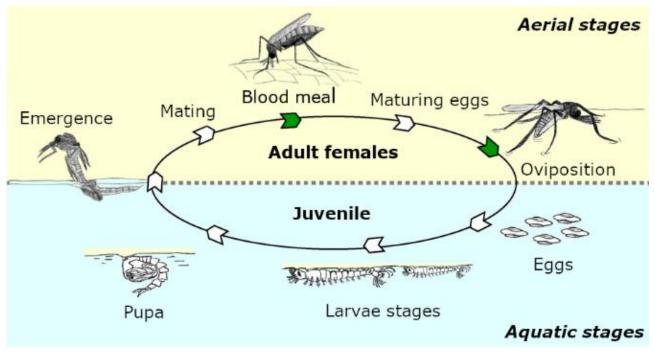
Mode « Epidémiologique » modélisation du taux de reproduction de la dengue

Arbocarto: outil du Ministère de la Santé et de la Prévention

Arbocarto-V1 (2018-2019): démonstrateur

Arbocarto-V2 (2021-2022):
Outil opérationnel

ARBOCARTO


Arbocarto-V3 (2022-2023): ajout R0 dengue

Evolutions Arbocarto V1 à V2

- Un seul exécutable
 - quelle que soit la zone géographique de la modélisation
 - quelle que soit l'espèce d'Aedes (albopictus ou aegypti) et diapausant ou non
- Une souplesse d'intégration des données météorologiques
- Intégration de divers scénarios de lutte anti-vectorielle et leur action combinée
- Adaptation/correction de petits dysfonctionnements de la V1
- Amélioration ergonomique

Le modèle (1)

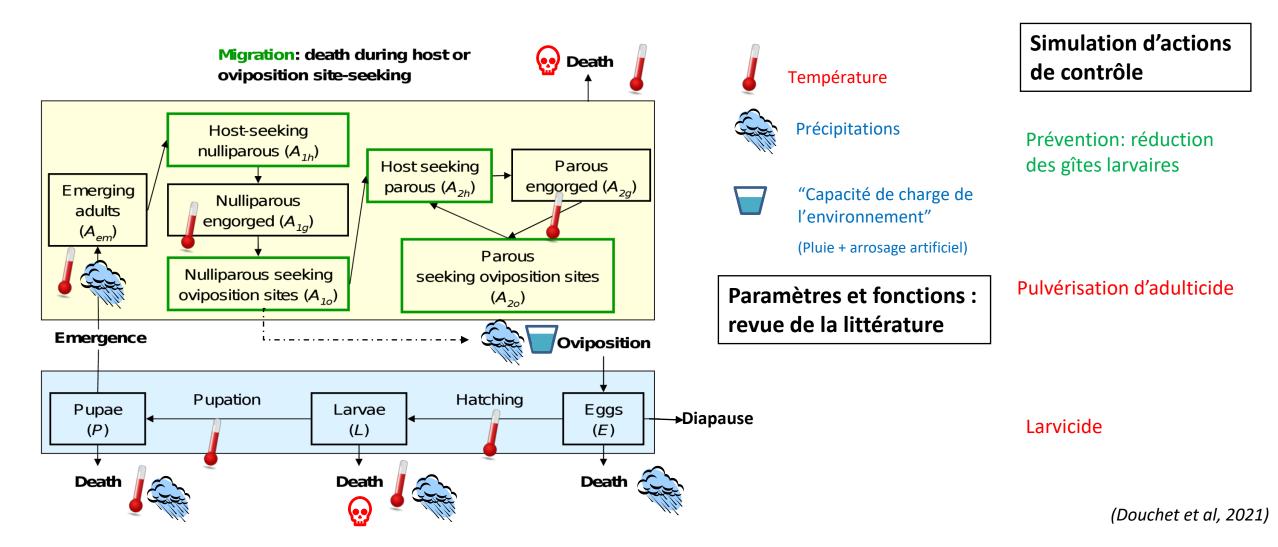
• Un modèle mécaniste générique de dynamique de population de moustiques ...

(Cailly, 2012: A climate-driven abundance model to assess mosquito control strategies)

... adapté à Ae. albopictus

✓ En climat tempéré (avec diapause)

(Tran et al, 2013: A Rainfall- and Temperature-Driven Abundance Model for Aedes albopictus Populations)


✓ En climat tropical

(Tran et al, 2020, Plos One)

... et *Ae. aegypti*

(Bonnin et al, sous presse)

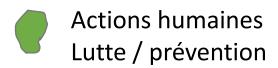
Le modèle (2)

Fonctionnement

Données requises en entrée

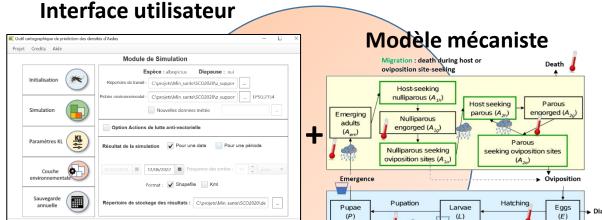
Localisation des stations et Données Météo journalières

Fréquence libre d'intégration



Fichier environnemental

Données optionnelles



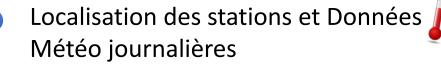
Données environnementales complémentaires ou mises à jour

> (ex : maison abandonnée, végétation, occupation du sol ...)

Donnée en sortie

Fichier géographique avec les densités de moustiques

Système d'Information du Ministère de la Santé (SI-LAV)


Système d'Information Géographique Ex ArcGIS, QGIS

Google Earth

Death /

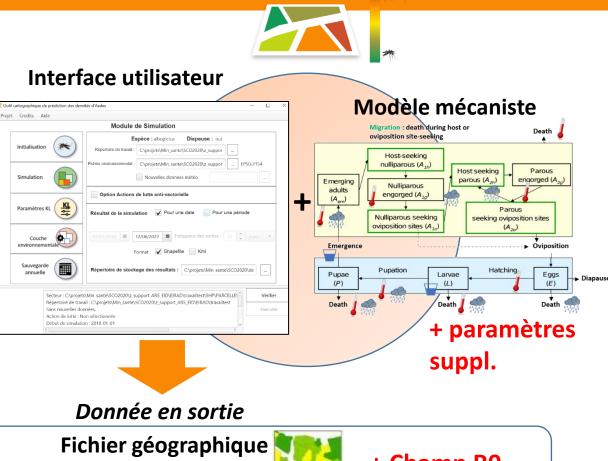
Fonctionnement Arbocarto v3

Données requises en entrée

Fréquence libre d'intégration

Occupation du sol

Données optionnelles

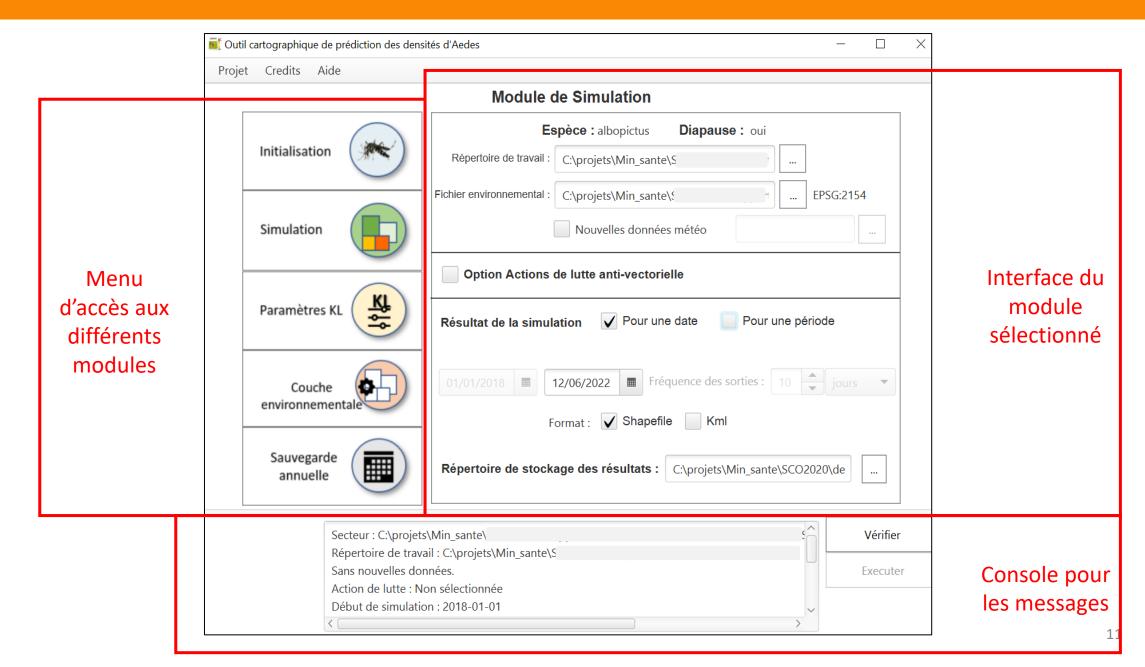

Actions humaines Lutte / prévention

Données environnementales complémentaires ou mises à jour

> (ex : maison abandonnée, végétation, occupation du sol ...)

ARBOCARTO

avec les densités de moustiques


+ Champ R0

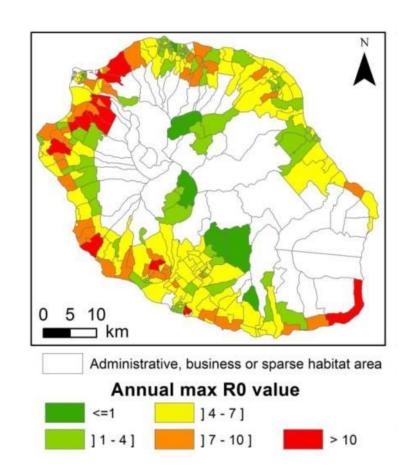
Système d'Information du Ministère de la Santé (SI-LAV)

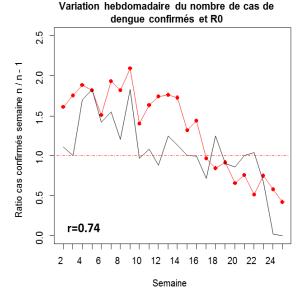
Système d'Information Géographique Ex ArcGIS, QGIS

Google Earth

L'interface

Exemples de sorties HÖPITAUX-FACULTÉS CELLENEUVE LES CÉVENNES Montpellier February March April January AIGUERELLES **OVALIE** PRÉS D'ARÈNES LA CROIX D'ARGENT May June July August **Montpellier (France)** La Réunion November September October December Predicted adult density (/ ha) [500 - 1000 [0 - 100 [— Destruction of breeding sites 100 - 250 [>= 1000 - Fumigation 60 Limit of vector control sector 250 - 500 [No prediction ⊐ km


Simulation de différentes actions


Exemples de sorties (RO)

$$R_0 = ma^2bp^n/-r\ln p.$$

Notation	Definition*	Expression*	Reference
m	Vector density per host	$\frac{A_{tot}}{H}$	[25,49]
а	Daily biting rate	$\frac{A_h}{A_h}$, γ_{Ah} , with $\gamma_{Ah} = 0.2$	[25]
p	Daily survival rate	$rac{A_h}{A_{tot}}.\gamma_{Ah},$ with $\gamma_{Ah}=0.2$ $1-m_A-rac{A_{2h}+A_{2o}}{A_{tot}}.\mu_r,$ with $\mu_r=0.08$	[25]
n	EIP	$0.11T^2 - 7.13T + 121.17$	[32]
b	Vector competence	$-0.0043T^2 + 0.2593T - 3.2705$	[32]
r	Host recovery rate	0.2	[50]

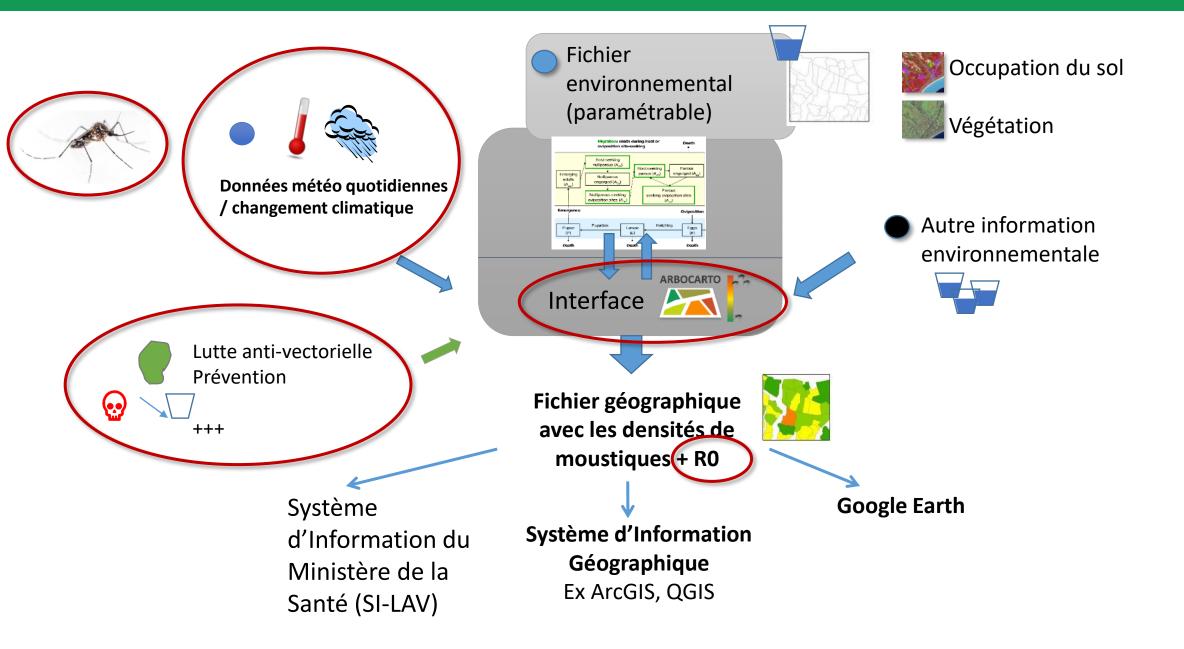
^{*}T temperature; H: human population; A_{tot} : total number of Ae. albopictus female mosquitoes A_h : number of Ae. albopictus host-seeking females; γ_{Ah} : daily transition rate from host-seeking to engorged adults; m_A : mortality rate of adult mosquitoes; μ_r : mortality rate related to seeking behavior. A_{tot} , A_h , A_{2h} , A_{2o} and m_A are estimated by ARBOCARTO model (see [25] for details).

1,8x10^8. Validation (exemples) Relevés par le modèle Modèle France Nice. 0.8 Nombre œufs 0.6 2000 2010 2011 2012 2013 2017 2009 2014 2015 2016 2018 Port Louis r = 0.68Providence r = 0.42Larvae per trap per trap Mar May Jul Sep Nov Jan Mar May Jul Sep Nov Jan Date Date Ste-Marie Indian Ocean Maurice rkshor La Réunion

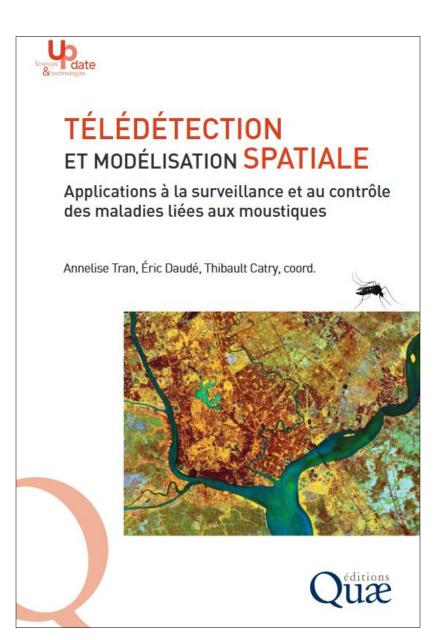
Conclusions

- Outil opérationnel, co-construit avec les utilisateurs
 - → Facile à prendre en main
 - → Saisie des paramètres réduite à l'essentiel
 - → Evolutif et paramétrable simplement

- Manuel utilisateur + Guide « préparation des données »
- Kit de formation
 - 40 personnes formées sur la V2



• Équipe joignable : arbocarto@teledetection.fr


Perspectives

Pour en savoir plus...

https://www.arbocarto.fr

Contact: arbocarto@teledetection.fr

